National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Supportless 3D print by 6-axis robotic arm
Krejčiřík, Petr ; Horák, Zdeněk (referee) ; Škaroupka, David (advisor)
This diploma thesis deals with the solution 3D printing by KUKA robotic arm without realization of supporting structures. The 6-axis KUKA KR 60HA robotic arm allows adjusting 3D printing strategies compared to classical 3D printing concept. The first part of the diploma thesis is about the identification of the current state of knowledge, especially the state of the experimental device for the robotic 3D print. To improve quality of the printed is necessary to modify the printing head and develop the suitable calibration principle. Special printing strategies were designed to rearch the 3D printing overhead volumes without creating support structure. A special alghoritm in the Grasshopper evnironment was developed for generating 3D print trajectory on the body surface. For the quality improvement it is necessary to optimize the process parameters. The final step is experimental 3D printing with the evaluation of surface dimensions, geometric precision and layer coherence in various printing strategies.
Supportless 3D print by 6-axis robotic arm
Krejčiřík, Petr ; Horák, Zdeněk (referee) ; Škaroupka, David (advisor)
This diploma thesis deals with the solution 3D printing by KUKA robotic arm without realization of supporting structures. The 6-axis KUKA KR 60HA robotic arm allows adjusting 3D printing strategies compared to classical 3D printing concept. The first part of the diploma thesis is about the identification of the current state of knowledge, especially the state of the experimental device for the robotic 3D print. To improve quality of the printed is necessary to modify the printing head and develop the suitable calibration principle. Special printing strategies were designed to rearch the 3D printing overhead volumes without creating support structure. A special alghoritm in the Grasshopper evnironment was developed for generating 3D print trajectory on the body surface. For the quality improvement it is necessary to optimize the process parameters. The final step is experimental 3D printing with the evaluation of surface dimensions, geometric precision and layer coherence in various printing strategies.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.